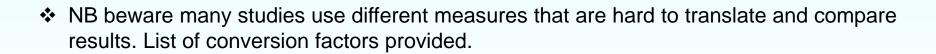
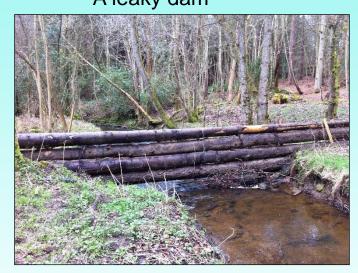


Urgency for action

- Committee on Climate Change recommend tree planting, peatland restoration and green infrastructure to meet latest 2050 net zero C target
- ❖ UK State of Nature 2019 –decline of abundance & distribution of UK's species continues. Some progress, but not meeting most of CBD's Aichi targets
- Climate change impacts on biodiversity likely to be significant requiring enhanced resilience of habitats & species

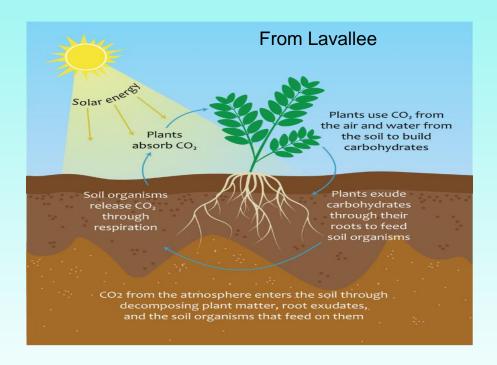




Opportunities

Integrate responses to these challenges with other ecosystem services, eg
A leaky dam

- ❖flood control
- water quality
- health and wellbeing
- Focus here on carbon and habitats
 - Carbon stock
 - Carbon losses
 - Carbon capture



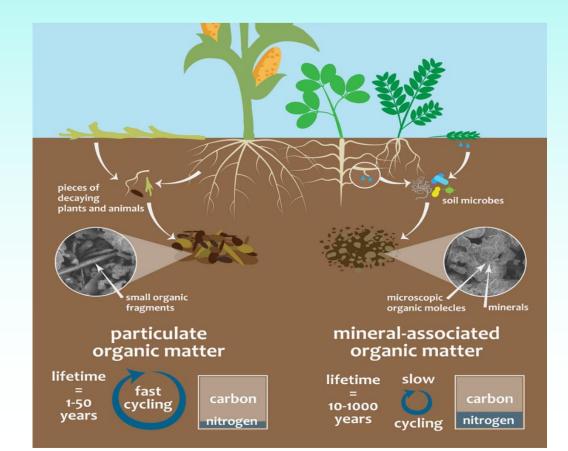
Where is carbon?

Carbon cycle basis for life on earth.

- About ½ of emissions from human activity absorbed by land and oceans, rest in atmosphere
- Easier to measure carbon stock very few complete carbon balance measurements.

Carbon stock - soils

- Globally 3-5x more C in soils than vegetation, 2-3x more than in atmosphere
- Soils can continue to capture & store C
- Amounts vary with climate, soil type, vegetation and soil microbes
- Most studies have used soil to 15 or 30cm, but 50% + can be below this – varies with vegetation
- ❖ More C in soils:
 - ❖ With >30% clay content
 - In wet soils
 - Acidic soils slow breakdown of OM
 - Where ectomycorrhiza and ericoid mycorrhiza dominate



♦C in soils

- dissolved in water,
- ❖as particulates in soil particles,
- ❖bonded to minerals.

Have different life cycles

Ideal – increase mineral-associated organic matter

Some soil carbon data

Soils under different habitats	Carbon tC/ha to 0.3m unless shown otherwise
Acid grassland	87
Neutral grassland	60
Flood plain grasslands	286 (to 3m)
Agriculturally improved grassland	59-61
Arable	43-64
heath lowland and upland	81-103
Podsols under heath	175-211
Bracken	77
Broadleaved mixed wood, soil dependent	133-320 to 0.5cm,
Conifer plantation	73-120 to 0.3m
Peatland	259 to 0.5m, 576 to 1m
Fen, marsh, swamp	76
Salt marsh	143

Carbon store in vegetation

Soils under different habitats	Carbon in vegetation
	tC/ha
Grasslands	1
heath lowland and upland	2-7.11
Unmanaged forest reserve/Broadleaved	218/70-111
mixed wood	
Conifer plantation	59-94
National average all wood types	57
Peatland	2
Salt marsh	8.32

Total amount of carbon in soils and vegetation depends on area of habitat – so in high value habitats more in heathland and bog than woodland

Woodlands

- ❖ 50% of total tree C in trunk – varies with species – BL higher than conifers
- ❖ 20-35% in roots >BL than conifers
- C lost in harvesting & ground preparation
- Most data from plantations

Carbon losses

- Habitat loss
- ❖ Soil disturbance ploughing, drainage,
- ❖ Soil loss sediment, erosion
- Wildfire
- Overgrazing

New Farm drainage in wet clay soils 2018

Saddleworth Moor wildfire damage 2018

How to maximise C capture

- Maximum effect:
 - protect remaining habitats
 - minimise losses in soils whilst undertaking habitat restoration or creation
 - large scale, maximising area capturing C small amounts over large areas & high amounts over small areas?
 - Optimising management to capture C usually also benefits biodiversity
- NB maximising CO₂ uptake is very different from maximising C stocks
- Can take 1-5 years to start overall C capture after disturbance

- ❖ First priority restore peatland hydrology and vegetation cover remove forestry, block drains/gullies, raise water table, revegetate bare peat reduces loss of stored C, can capture more carbon if wet enough as well. Variable amount = 0.24 2tC/ha/yr of new carbon, but can be large scale.
- Create permanent ponds, marshes, other wetlands, restore diverse flood plain meadows - connect to rivers –potential for 22tC/ha/yr or more in some constructed wetlands, 1.42tC/ha/year accumulation for well vegetated small ponds
- ❖ Arable to wetland potential gain 2.2-4.6tC/ha/yr

Gully blocking on blanket bog
Peak District

Drained raised bog for extraction *Sphagnum* after hydrological restoration, Ireland

- Create woodland native BL with structural diversity + dead wood for large, long-term forest C stocks and soil C.
- ❖ BL woodland can capture 2.5tC/ha/yr, conifers 2tC/ha/yr depends on age and density (eg. c.0.6 in shrub stage)
- ❖ Intensive even-aged forestry captures more/yr 4-10tC/ha/yr for short period but store not long-term, biodiversity poorer
- Greatest benefit creating woodland from arable
- ❖ Variations on this theme create orchards, scrub, hedges, wood pasture, all trap more carbon than grasslands or arable, not as much as woodlands, but wood pasture could be greater area
- Restore and create **heathland** on more acidic soils, c0.9 to 3.45tC/ha/yr
- ❖ Restore marine habitats maximum benefit = from arable in managed retreat. Tidal saltmarshes, estuaries & sea grass all good at trapping carbon in sediments (no methane lost) eg 0.16-2.1tC/ha/yr. Larger areas more effective.

Create and restore flower-rich grassland

Add legumes, especially red clover - 3.17tC/ha/yr captured

High diversity grassland can store 5x more C than monocultures through higher

rhizosphere C inputs into microbial community

Agricultural land:

- Reduce grazing
- Restore heathland
- Minimise lime additions
- Only one hay/silage cut/year
- Add organic matter
- No tillage, reduce compaction
- No drainage/other soil disturbances
- Remove drainage
- Reduce inorganic fertiliser use
- Create wood pasture in pastures
- Add hedges/scrub
- Restore flower-rich meadows
- Control invasive rushes
- Create wetlands (as part of NFM) marshes, flood plains, ponds, buffer zones to water

Conclusions

- All semi-natural ecosystems hold & can trap more C than arable or improved grassland
- These are all better for biodiversity and other ecosystem services
- The key is to create/restore diverse range of habitats that fit the soils, climate and link to remaining habitats in networks
- ❖ Scale is vital what can be done at the largest scale?
- Study in SW England showed creating & restoring habitats to add C on 824,244ha of mixed land would trap more than 16,000ha new woods
- Don't just think trees:
 - think big
 - think diversity of habitats
 - think biodiversity and soils
 - think wider ecosystem services

Conversions

- 1 tonne = 1,000,000gm
- Mg = megagram = million gm = 1 tonne
- Terragram = 10^{12} = 10,000,000,000,000gm = 10,000,000tonnes or 10,000,000,000kg
- Gigatonne = 10⁹ or 1,000million tonnes = billion tonnes
- $P = Peta Pg = petragram = 10^{15} = 1 billion tonnes$
- 1 Tonne of C is equivalent to 3.67 tonnes CO_2 . Convert C to $CO_2 = x3.667$.
- Convert CO_{2e} (which includes other GHG) to tC = x12/44 (relates to atomic weight of C and O)

