

Making Mitigation Work Measurable Mitigation – from project conception to delivery

Kate Harrington (IW)

Daireann McDonnell (Independent Ecologist)

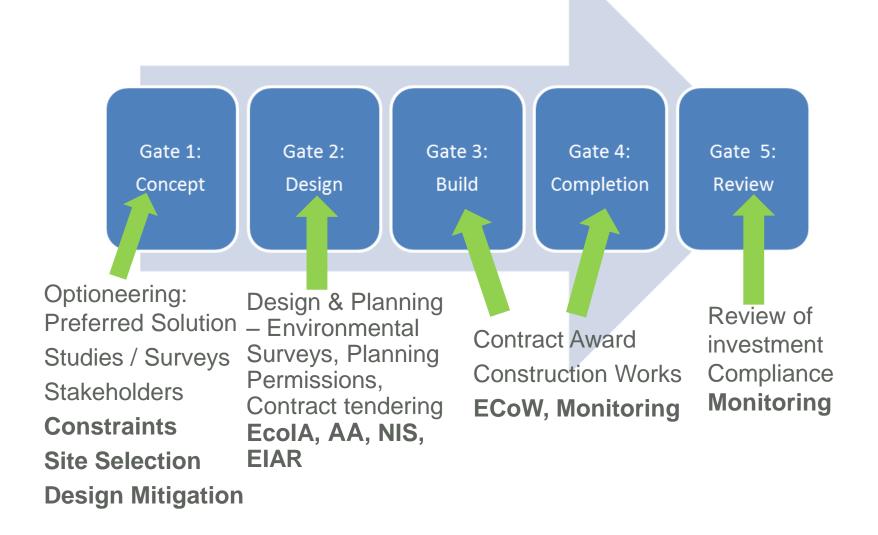
CIEEM Irish Conference, April 2018

Measurable Mitigation From Project Conception to Delivery

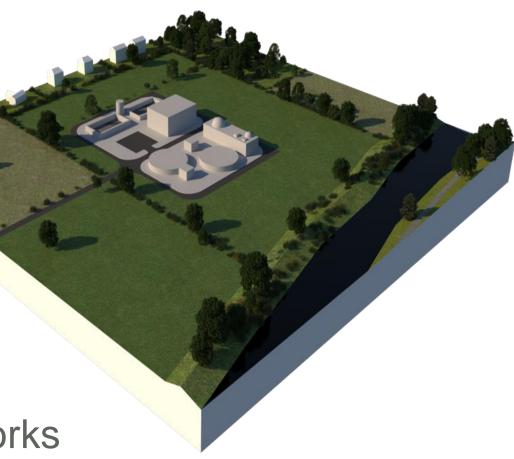
Introduction

Kate Harrington: Irish Water

Daireann McDonnell: Ecologist


Irish Water Projects

Project Lifecycle


1. Project Siting and Design

Opportunities?

Consider landscape setting

- Connectivity
- SUDS
- Avoid sensitivities
- Retaining existing features
- Deal with invasive species early (pre-works contract)

Project Siting and Design

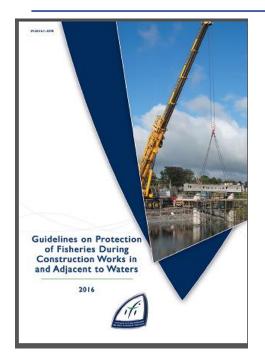
2. Development of Mitigation Measures

Key Issues:

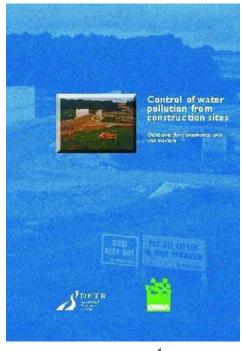
- Level of detail Is it deliverable? Will it work?
- EcolA and requirements of Wildlife Act/Protected species frequently forgotten about.

- Invasive species surveys and management plans constraints and timing of works.
- Expertise of consultants assessments and consequent mitigation measures often lean on or emphasise the expertise of the authoring team.

Appropriate Assessment



NIS Mitigation:


- Are all measures required to avoid or reduce impacts clearly detailed in the NIS? (must be standalone)
- Could the mitigation measure affect other ecological sensitivities on site?
- Have you made assumptions regarding the ecological expertise available to the contractor?
- Are you confident in results of other specialist reports (e.g. hydrogeology?)
- Monitoring Requirements? Could this point to an incomplete assessment?

Surface Water Management

"The contractor will follow XX guidance and prevent surface water pollution..."

- How does Contractor select appropriate measures to address ecological sensitivities?
- Ecologists completing assessments should be prescribing the appropriate measures for a particular site.

Surface Water Management

Detail most frequently lacking:

- Location of silt fences/ponds/curtains.
- Impact of installing these features.
- Evidence that there is adequate space/area available.
- Consideration of planning implications e.g. temp works areas.
- Mitigation for HDD risks.

Measures are low cost in context of scheme!

3. Implementation of Mitigation Measures

Contracts are used to control and allocate risk

DBO Projects

'Design Build Operate' Projects

- Detailed design post-planning flexibility for contractor.
- More risk goes to contractor.

Difficulties from EcolA/AA perspective:

- Avoid getting bullied into completing vague assessments.
- Ecologists must specify the required constraints.
- Assess worst case scenario, or assess impacts within a range of potential effects scales

Mitigation Measures in Contracts

'Employers Requirements'

CEMP: 'Construction' or 'Contractors' Environmental Management Plan

- Key planning requirement & strengthens NIS
- Outline/Preliminary Specifies parameters / boundaries for compliance (measurable criteria/thresholds)
- Stimulates Project Team discussions prior to planning
- Finalised CEMP includes
 - Schedule of Environmental Commitments
 - Planning Conditions,
 - Approved by ECoW / Client

Mitigation Measures in Contracts

Employers Requirements'

- 'Schedule of Mitigation Measures and Environmental Commitments'
- Monitoring Plans
- Surface water management plans
- Construction erosion and sediment control plans
- Task-specific method statements for specific construction activities

Key Performance Indicators – KPI's

 Mechanism utilised to incentivise improved performance

- Carrot or Stick
- E.g. H&S, programme, ecological!
- Financial penalty for pollution incident
- Within framework structure contractors can be scored on past performance

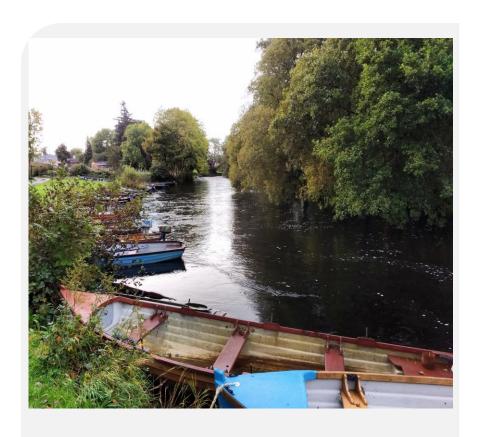
Role of an ECoW

- Scope of ECoW role in NIS / Ecological Reporting written into Contract Documents.
 - ECoW supervision for whole project or only elements?
 - What risks / elements need supervision?
 - Will the EcoW be as experienced as the Ecologist writing the assessment?
- Best employed by Employer's Representative not directly by Contractor.
- Specific expertise / qualifications applicable to the Project
 - Will a Contractor listen to a graduate?
 - Who will evaluate the CV of the proposed individual

Summary

- Consider the project design
- Is Mitigation detailed enough and will it work in practicality?
- Specify how mitigation measures will get incorporated into contracts
- Specify the role of the ECoW
- Irish Water ecologists available for ecological support/advice –
 - Kate Harrington <u>kharring@water.ie</u>
 - Brian Deegan <u>brdeegan@water.ie</u>

Oughterard WWTP Upgrade: Project History


Outline of Ecological Input and Acknowledgement of Involvement:

Oughterard WWTP: <u>Measurable Mitigation On Site</u>

- Part 1: Implementation of Effective Mitigation Measures
- Delivery of mitigation on site and ECoW Role
- Effective mitigation certainty from reporting to site.
- Part 2: Surface Water Management On-site
- Compliance with specified protection measures
- Adaptive solutions to meet requirements
- Part 3: Turbidity Monitoring Programme
- Planning conditions and Contract Document specifications
- Tailored solution and site-specific design

- Effective mitigation should meet the following criteria:
 - Scientific, evidence-based
 - MMeasurable
 - A Achievable
 - Repeatable
 - **T** Timely
- Protective / avoidance measures should always be specific to the site and its receptors
- Must be appropriate and scaled proportionately to the reduction / avoidance of risk

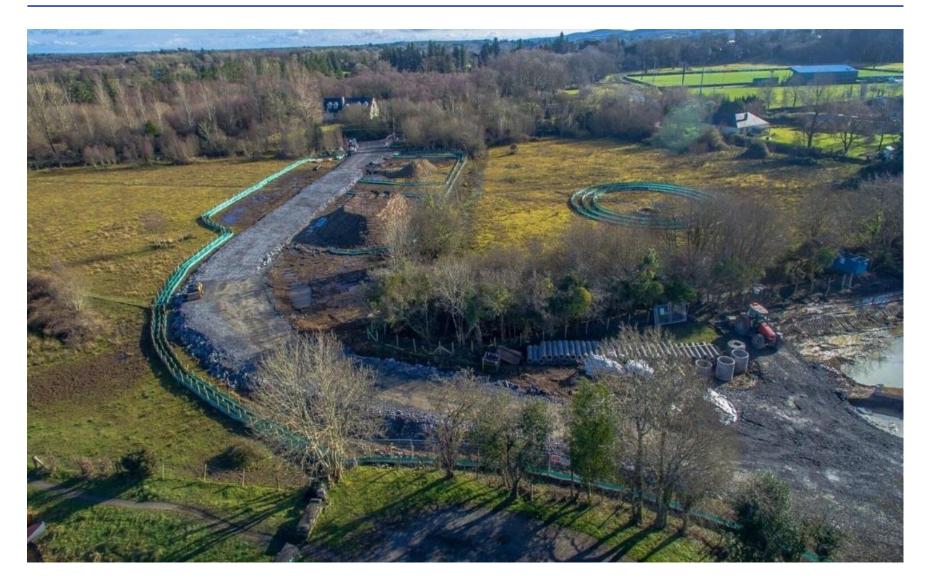
- Oughterard WWTP Upgrade: Lough Corrib SAC boundary and Freshwater Pearl Mussel (FPM) river
- Planning: Quantified mitigation proposals and advanced monitoring programmes
- Contract Documents: Certainty of delivery

IW Involvement Post-planning:

- Contract Documents incorporating Planning Conditions
- Contract Award and Contractor Appointment
- ECoW Appointment via Nicholas O'Dwyer
- Review and sign-off of Site-specific Environmental Method Statements in advance of works commencing
- Contractor mobilises to site ongoing review of EMS and monitoring

ECoW: Supervision on site

- Oversight / advisory role not risk management
- Appointment of ECoW always best as Client's / Proponents representative.
- Contractor may engage own Ecologist if required.
- ECoW role requires familiarity with site-specific receptors to make strong evaluations of risk
- ECoW must be persuasive in maintaining requirements for or against re. mitigation measures or risk avoidance.


- Site-specific threshold criteria for surface water management built into NIS / Planning
- Encompassing Management Plan delivered via Contract Documents
- Contractor's EMP's subject to review and approval on site
- Sub-Plans:
 - Surface Water Treatment and Retention (Settlement Areas)
 - Silt Fencing (site isolation)
 - Erosion and Sediment Control Plan
 - Surface Water Monitoring Programme

Owenriff River Channel – Lough Corrib SAC

Silt Fencing – Site Isolation

Triple-layer silt fence, dug in and secured as per guidance

Surface water drains isolated with check-dams and silt curtains in series

Sediment control for dewatering

- Constraints and issues encountered on site:
 - Lands made available
 - Retention Time
 - Connectivity to local drainage features
 - Site Investigation / Geology
 - Flood risk

Monitoring is necessary to:

- Ensure required mitigation is implemented in full by Contractor – need audit / recorded account
- Demonstrate the proponent is maintaining full control and responsibility
- Demonstrate that the predicted impact thresholds / significance have not been exceeded
- Demonstrate mitigation proposed was effective in achieving objectives
- Confirm that impacts or adverse effects arising are or are not resulting from the works.

- Conservation Status (C.O.s) for FPM standard surface water quality criteria for TSS do not afford protection
- Suspended Solids vs. Turbidity monitoring
- Aspirational value of 25mg/l is not achievable

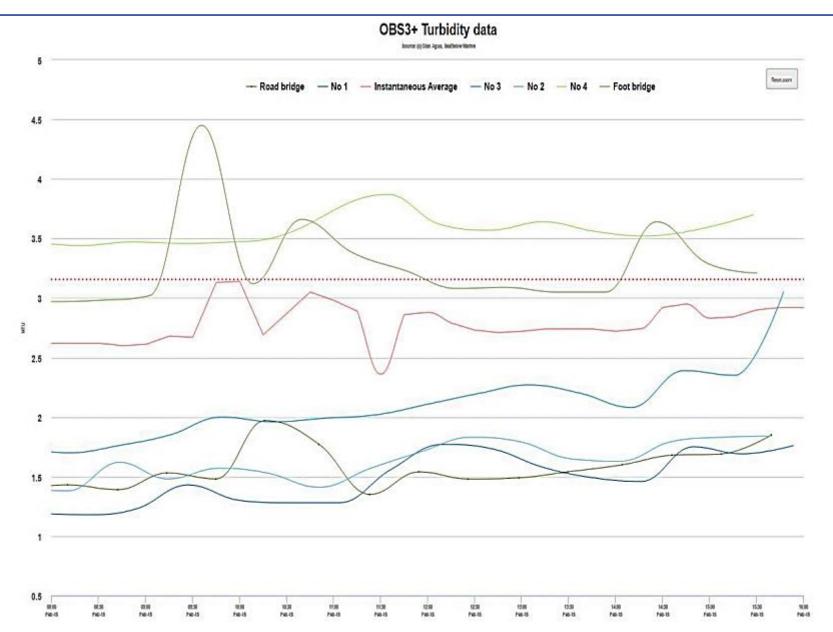
Weather Forecast Trigger Values – Measurable Criteria

- Schedule 1: Very high risk activities
 - 6hour rainfall >3mm / 12hour rainfall >4mm / 24hour rainfall >5mm
 - No overland flow or pathway for water movement
 - Conditions on the ground match the forecast
- Schedule 2: High risk activities
 - 6hour rainfall >6m m/ 12hour rainfall >8mm / 24hour rainfall >10mm
 - Conditions on the ground match the forecast
- Schedule 3: Intermediate to low risk
 - Silt fencing manages all risks; work can be undertaken in all weathers but turbidity monitoring triggers remain

Owenriff River Channel – Lough Corrib SAC

- Monitoring programme in the Owenriff River (SAC/FPM population)
- 6 no. fixed turbidity monitors at agreed locations.
 Fully operational prior to works commencing.
- Each monitor takes 5 consecutive readings and outputs an averaged value.
- Readings transmitted to web-based data portal by Sea Below Marine – allows live monitoring.
- Data graph over time for each monitor + rolling / instantaneous averages / data processing.

Turbidity monitoring gauge installation



Measurable Criteria - Turbidity Thresholds / Alerts:

- The following conditions have been considered in establishing the parameters.
 - Low Flow Level (<1.25m (from OPW)) uses a long term rolling average (of 3 x upstream gauges) based on previous 30 days.
 - High Flow Level (>1.25m (from OPW)) uses an instantaneous average (of 3 x upstream gauges) updated every 5 minutes.
- There are two alert systems for all conditions (high flow) / low flow)
 - Alert 1 is when any of the downstream monitors reaches 80% of the average.
 - Alert 2 is when any of the downstream monitors reaches 100% of the average.

Summary

- Measurable threshold criteria ensure compliance with mitigation / protection objectives (certainty)
- ECoW familiarity with site sensitivities
- Use of technology to provide data
- Data allows demonstration of project effects (certainty feedback loop)

CLOSING

Recognition of Project Inputs

Many Thanks for Listening

Open for Questions